时间:2017-7-25 9:49:21 来源:科学网
7月20日,生命中心颜宁研究组在《细胞》(Cell)期刊在线发表题为《来自电鳗的电压门控钠离子通道Nav1.4-β1复合物结构》(Structure of the Nav1.4-β1 complex from electric eel)的研究论文,首次报道了带有辅助性亚基的真核生物电压门控钠离子通道复合物可能处于激活态的冷冻电镜结构。该成果是电压门控离子通道(voltage-gated ion channel)的结构与机理研究领域的一个重要突破。
电压门控钠离子通道(以下简称“钠通道”)位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。顾名思义,钠通道感受膜电势的变化而激活或失活。对于可激发的细胞,细胞膜两侧由于钠离子、钾离子、钙离子、氯离子等离子的不对称分布,产生跨膜电势差。在静息状态下,细胞膜内电势低,膜外电势高,3-5纳米厚的细胞膜两侧电势差大概为-70毫伏左右。通常情况下,钠通道在细胞膜去极化状态,也就是细胞内相对电势升高时激活(即钠通道中心通透孔道打开,钠离子由高浓度的胞外侧流向胞内),从而引发动作电位的起始;而其又具备特殊的结构特征,使之在激活的几毫秒内迅速失活,从而保证通过与钾离子通道的协同作用结束动作电位,以及由钠钾泵介导的静息电势的重建,为下一轮的动作电位产生做好准备。
真核生物的钠通道主要由负责感受膜电势控制孔道开闭进而选择性通透钠离子的α亚基和参与调控的β亚基组成。在人体中共有9种钠通道α亚型(分别命名为Nav1.1-1.9)和4种β (β1-4)亚基,特异分布于神经和肌肉组织中。由于其重要的基本生理功能,钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。至今为止,已经发现了1000多种与疾病相关的钠通道突变体。另一方面,很多已知的包括蝎毒、蛇毒、河鲀毒素在内的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。钠通道是诸多国际大制药公司研究的重要靶点,其结构为学术界和制药界共同关注。
颜宁研究组十年来一直致力于电压门控离子通道的结构生物学研究,取得了一系列重要成果,包括来自细菌中的钠通道NavRh的晶体结构 (Zhang et al., 2012)。而近两年更是相继报道了与钠离子通道有同源性的世界上首个真核电压门控钙离子通道复合物Cav1.1 (Wu et al., 2016; Wu et al., 2015)以及首个真核钠通道NavPaS (Shen et al., 2017)的高分辨率冷冻电镜结构,为理解真核电压门控离子通道的结构与功能提供了重要基础。
在该最新研究中,颜宁研究组首次报道了真核钠通道复合物Nav1.4-β1的冷冻电镜结构,整体分辨率达到4.0 ,中心区域分辨率在3.5 左右,大部分区域氨基酸侧链清晰可见。该蛋白来自于电鳗(Electrophorus electricus),它具有一个特化的肌肉组织称为电板(electroplax),在受到刺激或捕猎时能够放出很强的电流;电流产生的基础即为钠通道的瞬时激活。因而该器官富集钠通道,其序列与人源九个亚型中的Nav1.4最为接近,因此命名为EeNav1.4。值得一提的是,电鳗中的钠通道正是历史上首个被纯化并被克隆的钠通道,已经具有半个世纪的研究历史,是钠通道功能和机理研究的重要模型,因此该蛋白一直以来也是结构生物学的研究热点。
在本研究中,研究组成员利用特异性的抗体从电鳗的电板组织中提纯出Nav1.4-β1复合物,通过对纯化条件和制样条件的不断摸索和优化,获得了性质稳定且均一的蛋白样品,并进一步制备出优质的冷冻电镜样品,最终利用冷冻电镜技术解析出其高分辨三维结构。与此前解析的钠通道NavPaS相比,该结构展示了三大新的结构特征:
1)该结构中带有辅助性亚基β1,首次揭示了辅助性亚基与α亚基的相互作用方式,有助于更好的理解β亚基对钠通道功能的调控机制;
2)与钠通道快速失活相关的III-IV 连接片段的位置与之前在Cav1.1和NavPaS结构相比有一个十分显著的位移,特别是与快速失活直接相关的IFM元件插入到了中间孔道结构域的内外两层之间。这一新的结构刷新了我们之前对钠通道失活机制的理解,却与历史上大量基于电生理的突变体分析十分吻合。本论文就此提出了一个解释钠通道快速失活的新的变构阻滞机制(allosteric blocking mechanism);
3)该结构特征与预测的激活态基本吻合,极有可能揭示了首个处于开放状态的真核钠通道的结构,实属意外之喜。由于钠通道蛋白在提纯后会很快失活,理论上处于开放状态的结构是极难甚至不可能捕捉到的。进一步分析电子密度发现,有一团疑似去垢剂分子的密度堵在胞内门控区域,帮助稳定了钠通道的开放状态。因此该结构整体呈现的极有可能是完全没有预料到的激活态。这一难得的构象有助于更好地理解电压门控离子通道最基本的机电耦合机理问题(electromechanical coupling mechanism)。除此之外,该结构还为基于结构的药物设计和功能研究提供了全新的模板。
颜宁教授为本文的通讯作者。清华大学医学院博士后闫浈、医学院副研究员周强、生命学院博士生王琳、生命学院博士毕业生吴建平为本文的共同第一作者;清华大学冷冻电镜平台雷建林博士指导数据收集。本研究获得了清华大学冷冻电镜平台工作人员李小梅和李晓敏的大力支持。国家蛋白质科学中心(北京)清华大学冷冻电镜平台和清华大学高性能计算平台分别为本研究的数据收集和数据处理提供了支持。生命科学联合中心、北京市结构生物学高精尖创新中心、膜生物学国家重点实验室、科技部、基金委为本研究提供了经费支持。
原文链接:http://www.cell.com/cell/fulltext/S0092-8674(17)30758-4
相关论文:
Shen, H., Zhou, Q., Pan, X., Li, Z., Wu, J., and Yan, N. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355.
Wu, J., Yan, Z., Li, Z., Qian, X., Lu, S., Dong, M., Zhou, Q., and Yan, N. (2016). Structure of the voltage-gated calcium channel Cav1.1 at 3.6 A resolution. Nature 537, 191-196.
Wu, J., Yan, Z., Li, Z., Yan, C., Lu, S., Dong, M., and Yan, N. (2015). Structure of the voltage-gated calcium channel Cav1.1 complex. Science (New York, NY 350, aad2395.
Zhang, X., Ren, W., DeCaen, P., Yan, C., Tao, X., Tang, L., Wang, J., Hasegawa, K., Kumasaka, T., He, J., et al. (2012). Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486, 130-134.
来源链接:http://news.sciencenet.cn/htmlnews/2017/7/382981.shtm